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Quantum vortex sheets

M. H. Chang,1 T. Chiueh,1,2,* and C. R. Lo1
1Physics Department, National Central University, Chung-Li, Taiwan

2Physics Department, National Taiwan University, Taipei, Taiwan
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Vortex sheets can be viable defects present in quantum systems. In two dimensions, the vortex sheet is
represented by a line connecting a pair of branch points of half-integer phase rotation. A stationary vortex sheet
can exist in a finite system either with a pinning potential or without any pinning potential as long as the
rotational symmetry is broken. Despite the rotational symmetry breaking, an angular-momentum-like quantum
number is always required for the existence of a stationary vortex sheet. Such a property is closely related to
the integrability of a dynamical system.@S1063-651X~98!10012-0#

PACS number~s!: 47.15.Hg, 67.20.1k, 67.57.Fg
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I. INTRODUCTION

Topological defects in ordered systems are present on
scales, from the microscopic@1–4#, mesoscopic@4–7#, to
macroscopic@8,9# scales. Line defects in three dimensio
~or point defects in two dimensions! are the most commonly
studied objects in microscopic scales. Such a defect pert
to a singular line around which the displacement, velocity
polarization vector rotates by an integral multiple of 2p
along any path in space. This singular line is often called
vortex line. In a crystalline solid, vortex lines often manife
themselves as dislocations@1,4,6#. In type-II superconductors
@2,3#, vortex lines are the sites at which the magnetic fie
are allowed to penetrate, and play the central role in limit
the superconductivity in the presence of high fields. Ho
ever, in mesoscopic and macroscopic scales, other type
defects are often present and have received much atten
Noticeably, in liquid crystals, a variety of different defec
have been classified and studied in detail. These defects
generally called textures@5#. Textures and defects are dy
namically caused by the symmetry-breaking effects dur
phase transitions. Even in high-temperature field theory, t
existence has also been predicted during the cosmolog
phase transitions in the early universe@10#.

On the microscopic level, except for the quantum vor
lines, few studies have been directed to addressing the
eral existence of quantum textures. Recently, the fluid
mulation of quantum dynamics has been examined and
concluded that without dissipation, the topological defe
are bound to be frozen in the quantum fluid, much like tho
in the ideal classical fluid, and can preserve their integ
throughout the evolution@11#. An interesting texture is the
vortex sheet in three dimensions. The sheet can be b
described in two dimensions as a branch line. This line c
nects a pair of branch points of half-integer phase rotat
the counterpart of such a quantum vortex sheet in liq
crystals has been observed and studied in details@4–6#. In
the present work, we will further elaborate on the existen
and structures of the quantum vortex sheets. Particularly
will show that their existence is closely linked to the ex
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tence of an angular-momentum-like quantum number as w
as the integrability of a dynamical system.

Section II gives the mathematical formulation of a pa
ticular type of stationary vortex sheet which has a zero
ergy and is infinitely extended in the third dimension. T
boundary condition is described in Sec. III. Two examples
the zero-energy vortex-sheet solutions are numeric
solved and given in Sec. IV. Although these solutions c
exist in a system with boundaries of arbitrary shape, th
existence in fact requires specifically tailored external pot
tial wells, present at the sheets, in order to pin the quan
particles. In Sec. V, we discuss the natures of vortex sh
and explore the possibilities of other stationary vortex-sh
solutions in the absence of pinning potentials.

II. ZERO-ENERGY VORTEX SHEETS

The Schrodinger equation reads

2
\2

2m
¹2c~r !1V~r !c~r !5Ec~r !. ~1!

Consider the situation whereE50 and the potentialV(r )
Þ0 only in some finite volume. It follows that in the regio
whereV(r )50, we have

¹2c~r !50, ~2!

and in the region whereV(r )Þ0 we have

¹2c~r !5
2mV~r !

\2
c~r !. ~3!

For the cases that are of interest to us, the potentialV is
nonzero only within an infinitely thin sheet, which is to b
identified as the vortex sheet. In other regions, Eq.~2! pre-
vails and it is no more than the Laplace equation, which m
be supplemented by a set of suitable boundary condition
yield viable solutions.

In the present work, the vortex sheet is assumed to
infinitely extended and has no structure in the third dime
67 ©1999 The American Physical Society
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sion and we consider only its spatial structure in two dim
sions. To construct the vortex-sheet solution, we first exp
the solution as

c~r !5exp$a@f1~r !6 if2~r !#%, ~4!

with the real functionsf1 andf2 , respectively, characteriz
ing the amplitude and phase of the complex wave funct
c, anda is a constant. Demandingc(r ) to be a single-valued
function, we find that the constanta must be chosen so tha
af2(r ) becomes an anglelike periodic function around
two-dimensional Euclidean space.

It follows from Eq. ~2! that

¹2f1~r !50 ~5!

and

¹2f2~r !50. ~6!

If we further demand that

¹f1•¹f250, ~7!

i.e., the orthogonal families off15const andf25const, the
functions f1 and f2 become conjugate functions in th
theory of complex variables. It is therefore sufficient only
solve for, e.g.,f1(r ), from whichf2(r ) trivially follows by
virtue of the Cauchy-Riemann equations:

]f1

]y
52

]f2

]x
,

]f1

]x
5

]f2

]y
. ~8!

Of particular interest among the two conjugate functio
is the phase functionf2 , wherea\¹f2 can be identified as
an irrotational velocity field of the quantum particle. Asaf2
should be an anglelike variable, we find that¹3¹f250
except at the vortex sheets where Eq.~2! breaks down. That
is, f2 is a multivalued function with a singular line located
an infinitely thin vortex sheet.

III. BOUNDARY CONDITIONS

For an isolated vortex sheet, we would like to have
solution where the density e2af1→0 and current
ae2af1¹f2→0 asr→`. In practice, both density and cu
rent can only decay algebraically slowly for the zer
eigenvalue state. Hence for any solution that obeys the f
given by Eq.~4!, we can only place the numerical bounda
as remote as the computational memory allows, so rem
that the probability density can decay by several orders
magnitude from the vortex sheet. However, such a solutio
still not an exact solution due to its failure in exactly sat
fying the boundary condition. Nevertheless, it is possible
circumvent this boundary problem if one gives up the fun
tional form required by Eq.~4! for the eigenfunction. Our
strategy in dealing with the boundary problem involves
suitable linear combination of the trial solutions of Eq.~5!
given by two different ‘‘trial’’ potentialsV. The composite
solution can be made to satisfy the desired boundary co
tion at the walls; moreover, once the composite solution
solved, the actual pinning potentialVn can also be self-
consistently determined in terms of the two trial potentialsV.
-
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To be specific, we let the boundary assume a cons
finite f1 for the trial solutions, so that¹f1 is always normal
to the boundary walls, implying that¹f2 is always parallel
to the boundary walls. This completes the prescription of
outer boundary condition for the trial solutions. On the oth
hand, for a stationary vortex sheet the velocity field¹f2
must be parallel to the vortex sheet; otherwise, the vor
sheet would be advected around by the self-induced velo
field and a stationary state would not be possible. Con
quently, much like the boundary walls discussed above,
inner boundary, i.e., the vortex sheet, must assume a con
valuef15f0 .

Combining Eqs.~2! and ~3!, we find that the problem of
solving for the trial solution is identical to an equivale
problem of solving for the electric potential given by
charged sheet, with an unknown surface charge density
equals 2mV(r )/a\2, i.e.,

¹2f15
2mV~r !

a\2
. ~9!

Poisson’s equation now replaces the Laplace equation,
~5!. In addition, since the amplitude of the wave function
arbitrary, we may arbitrarily choose a nonzero value forf0 .

What remains unknown is the functional form ofV(r ) on
the sheet. This problem is now reduced to an equiva
problem where one seeks the charge distribution on a
fectly conducting sheet surrounded by a perfectly conduc
box of a different electric potential. The charge distributi
can be determined only after the electric potential around
conducting sheet has been determined. That is, one ma
the functional form ofV(r ) only after one has solved for th
trial function f1 . The phasef2 can also be easily con
structed oncef1 is determined by using Eq.~8!.

IV. NUMERICAL SOLUTIONS

We may numerically solve for the electric potential give
by a perfectly conducting sheet of any arbitrary shape w
the proper boundary conditions discussed above. We a
the relaxation method to solve Poisson’s equation. A fic
tious time dependence is introduced to Poisson’s equatio
that it becomes a diffusion equation:

]f1

]t
2¹2f150, ~10!

where the source term at the vortex sheet has been inco
rated as the boundary condition, which sustains a cons
electric potentialf15f0 at the sheet.

A. Planar vortex sheet

The computation is carried out in a square box w
5003500 grid points. The vortex sheet is located in t
middle of the box 50 grids long and one grid wide. W
choose the boundary wall to be also a conducting wall wh
is an equipotential surface with another arbitrary valuef1

5f08 .
A standard stable numerical scheme is adopted to s

the diffusion equation. Independent of the initial condition
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PRE 59 69QUANTUM VORTEX SHEETS
the solution of Eq.~10! always settles to a unique stationa
state. The stationary solutionf1 has no node. Depicted in
Fig. 1 is the contour plot of the resulting solutionaf1(r ).
Along the constant-f1 contours are the flow lines of th
velocity field (a¹f2), whose magnitude is the same
au¹f1u according to the Cauchy-Riemann equations, a
whose sense of rotation can be arbitrary. In order forc to be
a single-valued function, the phaseaf2 must be quantized
Quantization ofaf2 can be achieved by choosing a prop
value fora. We may fix this proper value ofa by integrating
au¹f1u along any constant-f1 contour, so that the closed
contour integral of*au¹f1udl assumes62lp, wherel is an
integer. The above contour integral has made use of
equality u¹f1u5u¹f2u. When l assumes integers other tha
unity, the probability density will become the 2l th power of
that with l 51 and it decays outward more rapidly. Oncea is
fixed, the trial potentialV(r ) can be derived from Gauss’ law
by examining the amount of fluxa¹f1 emerging from the
sheet locally. The resulting 2mV(r )/\2 along the sheet, for
l 51, is shown in Fig. 2. Whenl assumes other integers, th

FIG. 1. Contour plot of the trial functionaf1 for the planar
vortex sheet. The actual velocity field has a magnitude equa
\ua¹f1u and its direction is along the contour either clockwise
anticlockwise. The spatial coordinate is in an arbitrary unit.

FIG. 2. Pinning potential 2mV/\2 of the trial function f1

shown in Fig. 1. The pinning potential 2mVn /\2 of the actual so-
lution is greater than 2mV/\2 by a factor 1.016.
d

r

e

quantum potential will need to be enhanced byl times.
In a finite system, a proper solution can be construct

wherec vanishes at the system boundary, by the followi
manipulations. We find that the proper wave function can
expressed as a linear combination of the trial functio
solved above,

c5@eaf12be2af1#e6 iaf2, ~11!

instead of Eq.~4!, where b is a constant. Except for the
yet-to-be-determined pinning potential at the sheet, this co

bination is a solution to¹2c50. Now, chooseb5e2af08. At
the boundaryf15f08 , such a solution can indeed satisfy th
boundary condition thatc50 and hence is the proper solu
tion. The resulting amplitude of this wave function is show
in Fig. 3. Unlike the vortex line, at which the probabilit
density must vanish due to the infinitely large veloc
(}r 21) at the line@12#, the quantum particle has the large
probability at the vortex sheet. In addition, since the ph
af2 remains the same for this proper wave function, t
actual velocity field is the same as that derived from the
function f1 given in Fig. 1.

The velocity field, proportional to the gradient off1 in
Fig. 1, is strongest around the edges of the vortex sh
since the incompressible flow must make sharp turns nea
edges. The associated centrifugal forces are larger than
where and hence it requires a deeper potential well at
edge to pin the flow. In fact, the strength of vorticity in th
sheet is closely related toV(r ) shown in Fig. 2. Using Eq.
~8!, we find¹2f1ẑ5¹3¹f2 , and using Eq.~9!, we find the
vorticity a¹3¹f252mVẑ/\2.

The equivalence toaf1 of Eq. ~4! for the proper wave
function, i.e., ln@exp(af1)2exp„a(2f082f1)…#, is no longer
the analytical conjugate of the phaseaf2 , and hence the
Cauchy-Riemann equations do not apply to them. Furth
more, the actual quantum potential must change accordin
to reflect the new combination for the wave function. In fa
due to the choice of combination given in Eq.~11!, the two
trial potentialsV of the two trial solutions have similar pro
files although their signs and magnitudes are different. T
actual potentialVn can be expressed in terms of the tri
potentialV depicted in Fig. 2 as

to
r

FIG. 3. Contour plot of the actual wave-function amplitude,ucu,
for the planar vortex sheet.
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Vn~r !5V~r !S 11be22af0

12be22af0
D , ~12!

with b5exp@2af08#. This result is straightforwardly obtaine
by applying Gauss’ law to Eq.~11!. It follows that to yield a
solution that satisfies the proper boundary condition o
needs the ratioVn /V.1 which approaches unity whe
a(f02f08)@1. For the present case, we determine t
Vn /V51.016.

The vortex-sheet state is in fact an excited state, sinc
proper linear combination of the two oppositely rotating d
generate states reveals a nodal line in it. We may adopt
Vn given above to determine its ground state numerica
The ground state has an amplitude peaking at where the
tential well is deep near the two edges, and the ground-s
eigenvalue is found to beE52331023\2/m as opposed to
E50 for the vortex-sheet state.

B. Distorted vortex sheet

We use the same computational configuration as the
vious one, except that the vortex sheet is now distorted in
L shape. The same relaxation method and boundary co
tions are employed to solve for the solution of Eq.~9!. The
resulting trial solutionf1 for l 51 is shown in Fig. 4; the
trial potential associated with this trial solution, 2mV(r )/\2

~also forl 51), along each side~labeled by 1 and 2 in Fig. 4!
of the vortex sheet is shown in Fig. 5. The actual potentialVn
is found to be greater thanV by a factor 1.28. For such
potential, the vortex-sheet state is also an excited state.
may also numerically determine the ground state. It ha
higher probability amplitude near where the potential wel
deep, and its eigenvalue isE521.431023\2/m.

Revealed in Fig. 4 is also the velocity field induced by t
vortex sheet along the contours. In the concave side of
sheet, the flow is distinctly weaker than the convex side
the sheet since the former has a shorter distance to tr
than the latter. Again, the largest velocity field occurs n
the edges of the sheet; in addition, immediately exterior
theL-shaped corner there is contained a larger velocity fie
Near these locations the quantum potential well must

FIG. 4. Contour plot of the trial function,af1 , for the L-shaped
vortex sheet.
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deeper in order to balance the enhanced centrifugal for
This expectation is consistent with Fig. 5.

V. DISCUSSIONS

In sum, we have obtained a particular type of station
vortex-sheet solution, which is an excited state and wh
has a high probability density at the sheet due to the pinn
of a quantum potential well at the sheet. Being an exci
state is not a problem for the existence of quantum vor
sheet in nature since a Fermi gas can often occupy exc
states. The major problem for it is that to yield a stationa
wave function, the pinning potential wellV must be fine-
tuned in order to guide the velocity along the sheet. Suc
fine-tuning does not seem able to arise either naturally
artificially in most physical systems. Hence, a quantum v
tex sheet may seem most likely to be nonstationary, adve
by the self-induced velocity governed by Biot-Savart’s la
For such a transient state, no specific pinning quantum
tential is required. If it is indeed so, the quantum vortex sh
would probably not be so interesting nor would it deser
much attention. However, as will be elaborated below, wi
out any pinning potential there are possibilities for the ex
tence of stationary vortex-sheet states, much like the
vortex states. Recall from Eq.~11! that the wave function
can be expressed as a linear combination of trial solutio
We may adjust the value ofb in such a way thatb5
2e2af0. The wave-function amplitude has the property th
¹(exp@af1#1exp@2af1#)50 at f15f0; that is, the prob-
ability density is a smooth function across the vortex she
From Eq.~12!, the singular quantum potentialV must vanish
accordingly. However, such a stationary vortex-sheet so
tion does not satisfy the proper boundary condition o
finite-size system wherec50 at the boundary. This diffi-
culty is due primarily to our assumption of a vanishin
eigenenergyE in Eq. ~2!. When we relax the conditionE
50, stationary vortex-sheet solutions can actually arise
the absence of pinning potentials, provided that suita
boundaries are given.

A natural coordinate for describing a planar vort
sheet is the elliptic coordinate (j1 ,j2), where x

FIG. 5. Pinning potential 2mV/\2 along each side~labeled bya,
b, and c in Fig. 4! of the L-shaped vortex sheet. The ratioVn /V
equals 1.28.
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PRE 59 71QUANTUM VORTEX SHEETS
5dcosh(j1)cos(j2) and y5d sinh(j1)sin(j2), or x1 iy
52d cosh(j11ij2). The coordinatesj1(x,y) andj2(x,y) are
conjugate functions, and the constant-j1 contours in thex-y
plane trace confocal ellipses, whose focal points are se
rated by a distance 2d on thex axis. On the other hand, th
coordinatej2 is similar to the angularlike variableaf2 con-
structed earlier, which changes by62lp around a closed
loop. The two-dimensional Helmholtz equation can be tra
formed into@13#

]2c

]j1
2 1

]2c

]j2
21k2d2@cosh2~j1!2cos2~j2!#c50 ~13!

in terms of the elliptic coordinate, wherek2 is the eigenvalue
equal to 2mE/\2 for our quantum-mechanical problem. Th
equation is separable. Letc5 f (j1)g(j2), and one finds tha
Eq. ~13! becomes

d2f

dj1
2 1@k2d2cosh2~j1!2 l 2# f 50 ~14!

and

d2g

dj2
2 1@ l 22k2d2cos2~j2!#g50, ~15!

where l 2 is a separation constant related to a generali
angular momentum. Note that Eq.~15! is the Mathieu equa-
tion, to which Floquet’s theorem applies. When the bound
is remotely located, one may consider the low-energy sta
In the low-k2d2 ~or low-2mEd2/\2) limit, we can ignore
k2d2cos2(j2) in Eq. ~15!, which then yields a solution
g(j2)5exp(6ilj2) with l being an integer. On the othe
hand, the termk2d2cosh2(j1) in Eq. ~14! can never be ig-
nored, in spite of the smallness ofk2d2 due to its association
with the large factor cosh2(j1) at largej1 .

For any given integerl, Eq. ~14! can be solved with the
boundary condition thatd f /dj150 at j150. When j1
, ln(2l/kd), the solution is approximatelyf 'cosh(lj1). How-
ever, as soon asj1. ln(2l/kd), the solutionf will begin to
oscillate and the oscillation amplitude decreases with the
tance j1 as e2j1/2, which becomesr 21/2 in terms of the
radial distancer in the cylindrical coordinate. At large dis
tances, the wave functionc resemblesJl(kr)eil u given by a
point vortex of angular momentuml\. Such afree vortex
sheet solution requires only a small positive eigenene
although it can never be a ground state.

If the system has a finite sizeL, the eigenvaluek2 must
assume a set of discrete values, the lowest of which is on
order of L22. However, for such an eigensolution to exis
the boundary must have a proper shape, i.e., an oval s
whose focal points will be those of the constant-j1 contours.
If not, it will be impossible for the wave functions to posse
a generalized angular momentum as its quantum num
and the stationary quantum vortex sheet will be impossibl
the absence of a pinning potential. Even when the sys
boundary is located at a very remote distance so that
system may seem to be boundary-free, the occurrenc
such ‘‘free’’ vortex sheets in fact arises primarily from th
focusing by a remote oval boundary.
a-
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The above change of coordinate employs a conform
transformation. We may proceed to employ the conform
transformation to examine another type of stationary vort
sheet solution. Instead of using the elliptic coordinate,
may adopt the parabolic coordinate, (x1 ,x2), wherex1 iy
5(1/2)(x11 ix2)2. The constant-x1 curves trace a family
of confocal parabolas,x1[@Ax21y21x#1/2, where x150
describes a half-line running from the originr 50 to r 5`
along the negativex axis. This half-line is exactly the branc
line associated with a half-infinitely extended vortex she
Similar kinds of defects have been observed in the tw
dimensional nematics of liquid crystals and are cal
the wedge disclinations@5#. The conjugate variable
x2@[6(Ax21y22x)1/2# runs from2` to `, which corre-
sponds to the polar angle from2p to p.

The Helmholtz equation can be written as@13#

]2c

]x1
2 1

]2c

]x2
2 1~x1

21x2
2!k2c50, ~16!

wherek2 is again proportional to the energy eigenvalue. T
equation is also separable. The viable solution must sat
]c/](x1)250 at x150 in order for it to be a smooth func
tion there without any pinning potential. A close scrutin
shows that the only solution that can satisfy such a condi
is the one with the separation constantl 2 equal to zero. Let
c5 f (x1)g(x2). It follows that f satisfies the equation

d2f

dx1
2 1k2x1

2f 50, ~17!

andg also satisfies the same equation. Nearx150, we have
an even solution,f 5c01c4k2x1

4@11O(x1
2)#, which meets

the desired boundary condition. Asymptotically,f
→ux1u21/2cos(kx1

21u) at large distances, whereu is a phase
factor. On the other hand, nearx250, we haveg5$c081@1
1O(k2x2

4)#%6 i $c18Akx2@11O(k2x2
4)#%. Apparently, there

is a net ‘‘momentum’’ flux„}Im@g* (dg/dx2)#… aroundx2
50, therefore supporting a rotational motion. In addition, t
asymptotic behavior ofg goes asg;ux2u21/2exp@6ikx2

2# at
large distances. The6 signs are found to be attached to th
two branches of the same solution on either side of thex1
50 half-line. The vortex sheet is thus clearly demonstra
in this asymptotic expression nearx150, where g
;uxu1/4exp@6ikx#. Such a vortex sheet can also arise fro
the focusing by a parabolic boundary, no matter how rem
the boundary is located. The boundary reflects an incid
particle from the lower/upper half-plane back to infini
along the upper/lower half-plane.

It should be stressed that the elliptic and parabolic co
dinates are the only two nontrivial coordinates, besides
trivial polar and planar coordinates, that allow for separat
of variables for the two-dimensional Helmholtz equati
@13#. Since energy must be a quantum number and since
existence of stationary vortex sheets also requires an ang
momentum-like quantum number, it follows that separab
ity, or integrability, of the Hamiltonian should be a necessa
condition for the quantum vortex sheets to exist. In so
cases, the quantum numbers must assume some specifi
ues in order for the Hamiltonian to become integrable. E
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72 PRE 59M. H. CHANG, T. CHIUEH, AND C. R. LO
amples include the vortex sheets pinned by arbitrary-sha
singular potentials, for which the eigenenergyE must be
zero. For these cases, the Hamiltonian is generally not i
grable, and the vortex-sheet states correspond to the q
isolating integral hypersurfaces in classical mechanics@14#.
Indeed, the Hamilton-Jacobi equation has a separable s
tion at the vortex-sheet state and the corresponding clas
trajectories lie on a two-dimensional surface in the fo
dimensional phase space. This singular integral surfac
fact pertains to the invariant surface of Kolmogorov@15#,
Arnold @16#, and Moser@17# type, the KAM surface. Such a
invariant surface traces the separatrix which describes
trajectories of the barely bound particles attracted by the
ning potential.
e,
ed
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As mentioned earlier, textures that exhibit finite and ha
infinite vortex sheets have been observed in the nematic
liquid crystals. In view of the close analogy between t
nematics and the superconductivity at the phase trans
@5#, we speculate that the quantum vortex-sheet defects
also be present, as bosonic excitations, in many-electron
tems and may play a non-negligible role in determining
macroscopic physical properties of the condensed matte
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